Cover image: An imaginary portrayal of the human microbiota. Emiliano Carboni, age 5, and Federico Carboni, age 8, provide a child's perspective on the diverse world of gut bacteria.
Publications:
PUBLICATIONS
on microbial population
The Microbiome Research Hub is the place where experts from different scientific areas come together and collaborate. The most obvious proof for research success is represented by the (joint) publication of scientific results.
Below is the list of published work from our affiliated faculty and scientists.
TAXONOMIC AND METABOLIC DEVELOPMENT OF THE HUMAN GUT MICROBIOME ACROSS LIFE STAGES: A WORLDWIDE METAGENOMIC INVESTIGATION
Leonardo Mancabelli, Christian Milani, Rosita De Biase, Fabiana Bocchio, Federico Fontana, Gabriele Andrea Lugli, Giulia Alessandri, Chiara Tarracchini, Alice Viappiani, Flora De Conto, Antonio Nouvenne, Andrea Ticinesi, Ovidio Bussolati, Tiziana Meschi, Rossana Cecchi, Francesca Turroni, Marco Ventura
Abstract
The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems.
EXPLORING MOLECULAR INTERACTIONS BETWEEN HUMAN MILK HORMONE INSULIN AND BIFIDOBACTERIA
Sonia Mirjam Rizzo, Giulia Alessandri, Gabriele Andrea Lugli, Federico Fontana, Chiara Tarracchini, Leonardo Mancabelli, Alice Viappiani, Massimiliano G Bianchi, Ovidio Bussolati, Douwe van Sinderen, Marco Ventura, Francesca Turroni
Abstract
Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species.
Exploring the biodiversity of Bifidobacterium asteroides among honey bee microbiomes
Gabriele Andrea Lugli, Federico Fontana, Chiara Tarracchini, Leonardo Mancabelli, Christian Milani, Francesca Turroni, Marco Ventura
Abstract
Bifidobacterium asteroides is considered the ancestor of the genus Bifidobacterium, which has evolved in close touch with the hindgut of social insects. However, recent studies revealed high intraspecies biodiversity within this taxon, uncovering the putative existence of multiple bifidobacterial species, thus, suggesting its reclassification. Here, a genomic investigation of 98 B. asteroides-related genomes retrieved from public repositories and reconstructed from metagenomes of the hindgut of Apis mellifera and Apis cerana was performed to shed light on the genetic variability of this taxon. Phylogenetic and genomic analyses revealed the existence of eight clusters, of which five have been recently characterized with a representative type strain of the genus and three were represented by putative novel bifidobacterial species inhabiting the honeybee gut. Then, the dissection of 366 shotgun metagenomes of honeybee guts revealed a pattern of seven B. asteroides-related taxa within A. mellifera that co-exist with the host, while A. cerana microbiome was characterized by the predominance of one of the novel species erroneously classified as B. asteroides. A further glycobiome analysis unveiled a conserved repertoire of glycosyl hydrolases (GHs) reflecting degradative abilities towards a broad range of simple carbohydrates together with genes encoding specific GHs of each B. asteroides-related taxa.
GLYCAN UTILIZATION AND CROSS-FEEDING ACTIVITIES BY BIFOBACTERIA.
Abstract
Intestinal diseases, such as Crohn's disease (CD), ulcerative colitis (UC) and pseudomembranous colitis (CDI), are among the most common diseases in humans and may lead to more serious pathologies, e.g. colorectal cancer (CRC). Next Generation Sequencing has in recent years allowed the identification of correlations between intestinal bacteria and diseases, although formulation of universal gut microbial biomarkers for such diseases is only in its infancy. In the current study, we selected and reanalyzed a total of 3048 public datasets obtained from 16S rRNA profiling of individuals affected by CD, UC, CDI and CRC. This meta-analysis revealed possible biases in the reconstruction of the gut microbiota composition due to the use of different primer pairs employed for PCR of 16S rRNA gene fragments. Notably, this approach also identified common features of individuals affected by gut diseases (DS), including lower biodiversity compared to control subjects (CTRL). Moreover, potential universal intestinal disease microbial biomarkers were identified through cross-disease comparisons. In detail, CTRL showed high abundance of the genera Barnesiella, Ruminococcaceae UCG-005, Alistipes, Christensenellaceae R-7 group and unclassified member of Lachnospiraceae family, while DS exhibited high abundance of Lactobacillus, unclassified member of Erysipelotrichaceae family and Streptococcus genera.
Trends Microbiol. 2017 Oct 28​